GRUPY BADAWCZE
Pracownia Neurobiologii Emocji
Przedmiotem naszych badań jest mózgowe podłoże emocji, przede wszystkim neurobiologiczne mechanizmy emocji przekazywanych społecznie (w prostych modelach empatii) oraz komórkowe mechanizmy wygaszania i odnawiania warunkowej reakcji strachu. Do społecznej komunikacji emocji niezbędna jest empatia, której podstawowa cecha to zdolność do odbierania sygnałów emocjonalnych nadawanych przez inną osobę (lub zwierzę, w przypadku modeli zwierzęcych). Wykorzystując stworzone przez nas eksperymentalne modele społecznego transferu emocji u szczurów i myszy, staramy się zrozumieć mechanizmy mózgowe zawiadujące komunikacją społeczną. Poznanie tych mechanizmów jest konieczne dla wyjaśnienia podłoża i prób terapii zaburzeń zachowań społecznych takich jak autyzm. Zajmujemy się również badaniem mózgowych mechanizmów wygaszania i odnawiania warunkowej reakcji strachu. Wygaszanie warunkowej reakcji strachu stanowi model terapii zaburzeń, w których występuje patologiczny strach lub lęk. Jednak strach stłumiony dzięki procedurze wygaszania może w pewnych sytuacjach, na przykład w wyniku zmiany kontekstu sytuacyjnego, ujawnić się ponownie. Zjawisko to, zwane odnawianiem warunkowej reakcji strachu, stanowi poważny problem w terapiach zaburzeń lękowych. Dlatego, wykorzystując eksperymentalne modele zwierzęce, staramy się poznać neuronalne mechanizmy zawiadujące wygaszaniem warunkowej reakcji strachu w nadziei, że pomoże to w przyszłości optymalizować terapię takich zaburzeń jak fobie czy zespół stresu pourazowego.
- Puścian, A., Bryksa, A., Kondrakiewicz, L., Kostecki, M., Winiarski, M., & Knapska, E. (2022). Ability to share emotions of others as a foundation of social learning. Neuroscience and biobehavioral reviews, 132, 23–36. https://doi.org/10.1016/j.neubiorev.2021.11.022
- Andraka K, Kondrakiewicz K, Rojek-Sito K, Ziegart-Sadowska K, Meyza K, Nikolaev T, Hamed A, Kursa M, Wójcik M, Danielewski K, Wiatrowska M, Kublik E, Bekisz M, Lebitko T, Duque D, Jaworski T, Madej H, Konopka W, Boguszewski PM, Knapska E. Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Curr Biol. 2021 Jun 7;31(11):2347-2358.e6. doi: https://doi.org/10.1016/j.cub.2021.03.047
- Szadzinska, W., Danielewski, K., Kondrakiewicz, K., Andraka, K., Nikolaev, E., Mikosz, M., & Knapska, E. (2021). Hippocampal Inputs in the Prelimbic Cortex Curb Fear after Extinction. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(44), 9129–9140. https://doi.org/10.1523/JNEUROSCI.0764-20.2021
- Puścian A, Winiarski M, Łęski S, Charzewski Ł, Nikolaev T, Borowska J, Dzik JM, Bijata M, Lipp HP, Dziembowska M, Knapska E. Chronic fluoxetine treatment impairs motivation and reward learning by affecting neuronal plasticity in the central amygdala. Br J Pharmacol. 2021 Feb;178(3):672-688. doi: https://doi.org/10.1111/bph.15319
- Gorlewicz, A., Barthet, G., Zucca, S., Vincent, P., Griguoli, M., Grosjean, N., Wilczynski, G., & Mulle, C. (2021). The Deletion of GluK2 Alters Cholinergic Control of Neuronal Excitability. Cerebral cortex (New York, N.Y. : 1991), bhab390. https://doi.org/10.1093/cercor/bhab390
- Racicka-Pawlukiewicz E, Kuć K, Bielecki M, Hanć T, Cybulska-Klosowicz A, Bryńska A. The Association between Executive Functions and Body Weight/BMI in Children and Adolescents with ADHD. Brain Sci. 2021 Feb 1;11(2):178.
- Lubec J, Kalaba P, Hussein AM, Feyissa DD, Kotob MH, Mahmmoud RR, Wieder O, Garon A, Sagheddu C, Ilic M, Dragačević V, Cybulska-Klosowicz A, Zehl M, Wackerlig J, Sartori SB, Ebner K, Kouhnavardi S, Roller A, Gajic N, Pistis M, Singewald N, Leban JJ, Korz V, Malikovic J, Plasenzotti R, Sitte HH, Monje FJ, Langer T, Urban E, Pifl C, Lubec G. Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Mol Psychiatry. 2021 Jul 9. doi: https://doi.org/10.1038/s41380-021-01214-x.
- Ahmadi M, Kazemi K, Kuc K, Cybulska-Klosowicz A, Helfroush MS, Aarabi A. Resting state dynamic functional connectivity in children with attention deficit/hyperactivity disorder. J Neural Eng. 2021 Aug 16;18(4).
- Ahmadi M, Kazemi K, Kuc K, Cybulska-Klosowicz A, Helfroush MS, Aarabi A. Disrupted Functional Rich-Club Organization of the Brain Networks in Children with Attention-Deficit/Hyperactivity Disorder, a Resting-State EEG Study. Brain Sci. 2021 Jul 16;11(7):938.
- Bielski K, Adamus S, Kolada E, Rączaszek-Leonardi J, Szatkowska I. Parcellation of the human amygdala using recurrence quantification analysis. Neuroimage. 2021 Feb 15;227:117644. doi: 10.1016/j.neuroimage.2020.117644. https://www.sciencedirect.com/science/article/pii/S1053811920311290?via%3Dihub
- Karwicka, W., Wiatrowska, M., Kondrakiewicz, K., Knapska, E., Kursa, M. B., & Hamed, A. (2021). Relaying Aversive Ultrasonic Alarm Calls Depends on Previous Experience. Empathy, Social Buffering, or Panic?. Brain sciences, 11(6), 759. https://doi.org/10.3390/brainsci11060759
- Olsson, A., Knapska, E., & Lindström, B. (2020). The neural and computational systems of social learning. Nature reviews. Neuroscience, 21(4), 197–212. https://doi.org/10.1038/s41583-020-0276-4
- Szczepanik, M., Kaźmierowska, A. M., Michałowski, J. M., Wypych, M., Olsson, A., & Knapska, E. (2020). Observational learning of fear in real time procedure. Scientific reports, 10(1), 16960. https://doi.org/10.1038/s41598-020-74113-w
- Kiryk, A., Janusz, A., Zglinicki, B., Turkes, E., Knapska, E., Konopka, W., Lipp, H. P., & Kaczmarek, L. (2020). IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behavioural brain research, 388, 112620. https://doi.org/10.1016/j.bbr.2020.112620
- Puścian, A., Benisty, H., & Higley, M. J. (2020). NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex. Cell reports, 32(4), 107970. https://doi.org/10.1016/j.celrep.2020.107970
- Cybulska-Klosowicz A, Tremblay F, Jiang W, Bourgeon S, Meftah EM, Chapman CE. Differential effects of the mode of touch, active and passive, on experience-driven plasticity in the S1 cutaneous digit representation of adult macaque monkeys. J Neurophysiol. 2020 Mar 1;123(3):1072-1089.
- Kuc K, Bielecki M, Racicka-Pawlukiewicz E, Czerwinski MB, Cybulska-Klosowicz A. The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD. Sci Rep. 2020 Apr 10;10(1):6176.
- Ahmadi M, Kazemi K, Kuc K, Cybulska-Klosowicz A, Zakrzewska M, Racicka-Pawlukiewicz E, Helfroush MS, Aarabi A. Cortical source analysis of resting state EEG data in children with attention deficit hyperactivity disorder. Clin Neurophysiol. 2020 Sep;131(9):2115-2130.
- Gorlewicz, A., Krawczyk, K., Szczepankiewicz, A. A., Trzaskoma, P., Mulle, C., & Wilczynski, G. M. (2020). Colocalization Colormap -an ImageJ Plugin for the Quantification and Visualization of Colocalized Signals. Neuroinformatics, 18(4), 661–664. https://doi.org/10.1007/s12021-020-09465-9
- Bogorodzki P, Piątkowska-Janko E, Obrębski W, Krzewski M, Wolak T, Krawczyk M, Soluch P, Szatkowska I. Czynnościowy rezonans magnetyczny (fMRI) w badaniach rehabilitacji poudarowej. Inżynieria Biomedyczna - podstawy i zastosowania (2020); Tom 8 (Obrazowanie Biomedyczne), Część 2 (Systemy Zobrazowań), Rozdział 2.8, str. 403-430. Akademicka Oficyna Wydawnicza Exit. ISBN 978-83-7837-097-0.
- Kuzniewska, B., Cysewski, D., Wasilewski, M., Sakowska, P., Milek, J., Kulinski, T. M., Winiarski, M., Kozielewicz, P., Knapska, E., Dadlez, M., Chacinska, A., Dziembowski, A., & Dziembowska, M. (2020). Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO reports, 21(8), e48882. https://doi.org/10.15252/embr.201948882
- Kondrakiewicz K, Rokosz-Andraka K, Nikolaev T, Górkiewicz T, Danielewski K, Gruszczyńska A, Meyza K, Knapska E. Social Transfer of Fear in Rodents. Curr Protoc Neurosci. 2019 Dec;90(1):e85. https://doi.org/10.1002/cpns.85
- Koza P, Beroun A, Konopka A, Górkiewicz T, Bijoch L, Torres JC, Bulska E, Knapska E, Kaczmarek L, Konopka W. Neuronal TDP-43 depletion affects activity-dependent plasticity. Neurobiol Dis. 2019 Oct;130:104499. doi: https://doi.org/10.1016/j.nbd.2019.104499
- Kondrakiewicz K, Kostecki M, Szadzińska W, Knapska E. Ecological validity of social interaction tests in rats and mice. Genes Brain Behav. 2019 Jan;18(1):e12525. doi: 10.1111/gbb.12525 https://onlinelibrary.wiley.com/doi/full/10.1111/gbb.12525
- Rymarczyk K, Zurawski L, Jankowiak-Siuda K, Szatkowska I. Empathy in facial mimicry of fear and disgust: simultaneous EMG-fMRI registration during observation of static and dynamic facial expressions. Front Psychol. 2019 Mar 27;10:701.doi: 10.3389/fpsyg.2019.00701. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00701/full
- Blanchard DC, Meyza K. Risk assessment and serotonin: Animal models and human psychopathologies. Behav Brain Res. 2019 Jan 14;357-358:9-17. doi: 10.1016/j.bbr.2017.07.008. https://www.sciencedirect.com/science/article/pii/S0166432817306551?via%3Dihub
- Jaworski J, Kalita K, Knapska E. c-Fos and neuronal plasticity: the aftermath of Kaczmarek's theory. Acta Neurobiol Exp (Wars). 2018;78(4):287-296. https://www.ncbi.nlm.nih.gov/pubmed/30624427
- Meyza K, Knapska E. What can rodents teach us about empathy? Curr Opin Psychol. 2018 Dec;24:15-20. doi: 10.1016/j.copsyc.2018.03.002. https://www.sciencedirect.com/science/article/pii/S2352250X17302816?via%3Dihub
- Dzik, J. M., Puścian, A., Mijakowska, Z., Radwanska, K., & Łęski, S. (2018). PyMICE: APython library for analysis of IntelliCage data. Behavior research methods, 50(2), 804–815. https://doi.org/10.3758/s13428-017-0907-5
- Harda Z, Dzik JM, Nalberczak-Skóra M, Meyza K, Łukasiewicz K, Łęski S, Radwanska K. Autophosphorylation of αCaMKII affects social interactions in mice. Genes Brain Behav. 2018 Jun;17(5):e12457. doi: 10.1111/gbb.12457 https://onlinelibrary.wiley.com/doi/full/10.1111/gbb.12457
- Meyza K., & Knapska E. Eds. Book: „Neuronal Correlates of Empathy - From Rodent to Human” Paperback ISBN: 9780128053973, eBook ISBN: 9780128093481
- Meyza KZ, Knapska E. Why mother rats protect their children. Elife. 2017 Jun 13;6. pii: e28514. doi: 10.7554/eLife.28514. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469613/
- de Hoz L, Gierej D, Lioudyno V, Jaworski J, Blazejczyk M, Cruces-Solís H, Beroun A, Lebitko T, Nikolaev T, Knapska E, Nelken I, Kaczmarek L. Blocking c-Fos Expression Reveals the Role of Auditory Cortex Plasticity in Sound Frequency Discrimination Learning. Cereb Cortex. 2017 Mar 17:1-11. doi: 10.1093/cercor/bhx060. [Epub ahead of print] https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhx060
- Stefaniuk M, Beroun A, Lebitko T, Markina O, Leski S, Meyza K, Grzywacz A, Samochowiec J, Samochowiec A, Radwanska K, Kaczmarek L. Matrix Metalloproteinase-9 and Synaptic Plasticity in the Central Amygdala in Control of Alcohol-Seeking Behavior. Biol Psychiatry. 2017 Jan 5. pii: S0006-3223(17)30001-X. doi: 10.1016/j.biopsych.2016.12.026. [Epub ahead of print] http://www.sciencedirect.com/science/article/pii/S000632231730001X
- Meyza KZ, Blanchard DC. The BTBR mouse model of idiopathic autism – Current view on mechanisms. Neurosci Biobehav Rev. 2017 Feb 3. pii: S0149-7634(16)30538-3. doi: 10.1016/j.neubiorev.2016.12.037. [Epub ahead of print] Review. http://www.sciencedirect.com/science/article/pii/S0149763416305383
- Vater M, Möckl L, Gormanns V, Schultz Fademrecht C, Mallmann AM, Ziegart-Sadowska K, Zaba M, Frevert ML, Bräuchle C, Holsboer F, Rein T, Schmidt U, Kirmeier T. New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep. 2017 Mar 10;7:44277. doi: 10.1038/srep44277. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345070/
- Meyza KZ, Bartal IB, Monfils MH, Panksepp JB, Knapska E. The roots of empathy: Through the lens of rodent models. Neurosci Biobehav Rev. 2016 Nov 4. pii: S0149-7634(15)30343-2. doi: 10.1016/j.neubiorev.2016.10.028. [Epub ahead of print] Review. https://linkinghub.elsevier.com/retrieve/pii/S0149-7634(15)30343-2
- Puścian A, Łęski S, Kasprowicz G, Winiarski M, Borowska J, Nikolaev T, Boguszewski PM, Lipp HP, Knapska E. Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism. Elife. 2016 Oct 12;5. pii: e19532. doi: 10.7554/eLife.19532. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5092044/
- Roszkowska M, Skupien A, Wójtowicz T, Konopka A, Gorlewicz A, Kisiel M, Bekisz M, Ruszczycki B, Dolezyczek H, Rejmak E, Knapska E, Mozrzymas JW, Wlodarczyk J, Wilczynski GM, Dzwonek J. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines. Mol Biol Cell. 2016 Dec 15;27(25):4055-4066. Epub 2016 Oct 19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156546/
- Magnowska M, Gorkiewicz T, Suska A, Wawrzyniak M, Rutkowska-Wlodarczyk I, Kaczmarek L, Wlodarczyk J. Transient ECM protease activity promotes synaptic plasticity. Sci Rep. 2016 Jun 10;6:27757. doi: 10.1038/srep27757. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901294/
- Misiewicz A, Goncerzewicz A, Jędrzejczak R, Zdziennicki F. Intra-strains diversity of expression of polymorphic PKS4 gene in comparison in zearalenone production by Fusarium graminearum during in vitro cultivation. Acta Biochim Pol. 2016;63(1):97-102. doi: 10.18388/abp.2015_1022. http://www.actabp.pl/pdf/1_2016/2015_1022.pdf
- Goncerzewicz A, Misiewicz A, Owczarek L, Jasińska U, Skąpska S. The Effect of a Newly Developed Oat-Banana Fermented Beverage with a Beta-glucan Additive on ldhL Gene Expression in Streptococcus thermophilus T(K)M(3) KKP 2030p. Curr Microbiol. 2016 Dec;73(6):773-780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059402/
- Mikosz M, Nowak A, Werka T, Knapska E. Sex differences in social modulation of learning in rats. Sci Rep. 2015 Dec 14;5:18114. doi: 10.1038/srep18114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677340/
- Meyza K, Nikolaev T, Kondrakiewicz K, Blanchard DC, Blanchard RJ, Knapska E. Neuronal correlates of asocial behavior in a BTBR T (+) Itpr3(tf)/J mouse model of autism. Front Behav Neurosci. 2015 Aug 6;9:199. doi: 10.3389/fnbeh.2015.00199. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526814/
- Gorkiewicz T, Balcerzyk M, Kaczmarek L, Knapska E. Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front Cell Neurosci. 2015 Mar 11;9:73. doi: 10.3389/fncel.2015.00073. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356064/
- Pisula E, Ziegart-Sadowska K. Broader Autism Phenotype in Siblings of Children with ASD--A Review. Int J Mol Sci. 2015 Jun 10;16(6):13217-58. doi:10.3390/ijms160613217. Review. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490493/
- Pisula E, Ziegart-Sadowska K. Social Communication and Language Deficits in Parents and Siblings of Children with ASD — A Short Review. In: Fitzgerald, M. (Ed.), Autism Spectrum Disorder - Recent Advances. 2015. InTech. https://www.intechopen.com/books/autism-spectrum-disorder-recent-advances/social-communication-and-language-deficits-in-parents-and-siblings-of-children-with-asd-a-short-revi
- Pisula E, Ziegart-Sadowska K, Kawa M. Language abilities in preschool-aged siblings of children with autism spectrum disorders – preliminary reports. Health Psychology Report, 2015. 3(3). https://www.termedia.pl/Language-abilities-in-preschool-aged-siblings-of-children-with-autism-spectrum-disorders-preliminary-report,74,24398,0,1.html
- Goncerzewicz A, Misiewicz A. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains. Acta Biochim Pol. 2015;62(4):841-50. doi: 10.18388/abp.2015_1144. http://www.actabp.pl/pdf/4_2015/2015_1144.pdf
- Puścian A, Lęski S, Górkiewicz T, Meyza K, Lipp HP, Knapska E. A novel automated behavioral test battery assessing cognitive rigidity in two genetic mouse models of autism. Front Behav Neurosci. 2014 Apr 29;8:140. doi: 10.3389/fnbeh.2014.00140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010752/
- Tsilibary E, Tzinia A, Radenovic L, Stamenkovic V, Lebitko T, Mucha M, Pawlak R, Frischknecht R, Kaczmarek L. Neural ECM proteases in learning and synaptic plasticity. Prog Brain Res. 2014;214:135-57. doi: 10.1016/B978-0-444-63486-3.00006-2. Review. http://www.sciencedirect.com/science/article/pii/B9780444634863000062
- Knapska E, Lioudyno V, Kiryk A, Mikosz M, Górkiewicz T, Michaluk P, Gawlak M, Chaturvedi M, Mochol G, Balcerzyk M, Wojcik DK, Wilczynski GM, Kaczmarek L. Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci. 2013 Sep 4;33(36):14591-600. doi: 10.1523/JNEUROSCI.5239-12.2013 http://www.jneurosci.org/content/33/36/14591.long
- Ganguly K, Rejmak E, Mikosz M, Nikolaev E, Knapska E, Kaczmarek L. Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning. J Biol Chem. 2013 Jul 19;288(29):20978-91. doi: 10.1074/jbc.M113.457903. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774367/
- Nowak A, Werka T, Knapska E. Social modulation in extinction of aversive memories. Behav Brain Res. 2013 Feb 1;238:200-5. doi: 10.1016/j.bbr.2012.10.031. http://www.sciencedirect.com/science/article/pii/S016643281200681X
- Kiryk A, Sowodniok K, Kreiner G, Rodriguez-Parkitna J, Sönmez A, Górkiewicz T, Bierhoff H, Wawrzyniak M, Janusz AK, Liss B, Konopka W, Schütz G, Kaczmarek L, Parlato R. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons. Front Cell Neurosci. 2013 Nov 11;7:207. doi: 10.3389/fncel.2013.00207. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823236/
- Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RL, Bolivar VJ, Blanchard DC, Blanchard RJ. The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res. 2013 Aug 15;251:25-34. doi: 10.1016/j.bbr.2012.07.021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529977/
- Knapska E, Macias M, Mikosz M, Nowak A, Owczarek D, Wawrzyniak M, Pieprzyk M, Cymerman IA, Werka T, Sheng M, Maren S, Jaworski J, Kaczmarek L. Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17093-8. doi: 10.1073/pnas.1202087109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479515/
- Dziembowska M, Milek J, Janusz A, Rejmak E, Romanowska E, Gorkiewicz T, Tiron A, Bramham CR, Kaczmarek L. Activity-dependent local translation of matrixmetalloproteinase-9. J Neurosci. 2012 Oct 17;32(42):14538-47. doi:10.1523/JNEUROSCI.6028-11.2012. http://www.jneurosci.org/content/32/42/14538.long
- Hoehna Y, Uckermann O, Luksch H, Stefovska V, Marzahn J, Theil M, Gorkiewicz T, Gawlak M, Wilczynski GM, Kaczmarek L, Ikonomidou C. Matrix metalloproteinase 9 regulates cell death following pilocarpine-induced seizures in the developing brain. Neurobiol Dis. 2012 Dec;48(3):339-47. doi: 10.1016/j.nbd.2012.06.023. http://www.sciencedirect.com/science/article/pii/S0969996112002380
- Pearson BL, Bettis JK, Meyza KZ, Yamamoto LY, Blanchard DC, Blanchard RJ. Absence of social conditioned place preference in BTBR T+tf/J mice: relevance for social motivation testing in rodent models of autism. Behav Brain Res. 2012 Jul 15;233(1):99-104. doi: 10.1016/j.bbr.2012.04.040. Epub 2012 Apr 27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378798/
- Corley MJ, Meyza KZ, Blanchard DC, Blanchard RJ. Reduced sulfate plasma concentrations in the BTBR T+tf/J mouse model of autism. Physiol Behav. 2012 Dec 5;107(5):663-5. doi: 10.1016/j.physbeh.2012.04.010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469741/
- Meyza KZ, Blanchard DC, Pearson BL, Pobbe RL, Blanchard RJ. Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice: a strong model of autism. Behav Brain Res. 2012 Mar 17;228(2):247-53. doi: 10.1016/j.bbr.2011.11.004. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22101175/
- Nowak K, Meyza K, Nikolaev E, Hunt MJ, Kasicki S. Local blockade of NMDA receptors in the rat prefrontal cortex increases c-Fos expression in multiple subcortical regions. Acta Neurobiol Exp (Wars). 2012;72(3):207-18. http://www.ane.pl/linkout.php?pii=7219
- Kiryk A, Mochol G, Filipkowski RK, Wawrzyniak M, Lioudyno V, Knapska E, Gorkiewicz T, Balcerzyk M, Leski S, Leuven FV, Lipp HP, Wojcik DK, Kaczmarek L. Cognitive abilities of Alzheimer's disease transgenic mice are modulated by social context and circadian rhythm. Curr Alzheimer Res. 2011 Dec;8(8):883-92. http://www.eurekaselect.com/89141/article
- Orsini CA, Kim JH, Knapska E, Maren S. Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neurosci. 2011 Nov 23;31(47):17269-77. doi: 10.1523/JNEUROSCI.4095-11.2011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241946/
- Uckermann O, Luksch H, Stefovska V, Hoehna Y, Marzahn J, Theil M, Pesic M, Górkiewicz T, Gawlak M, Wilczynski GM, Kaczmarek L, Ikonomidou C. Matrix metalloproteinases 2 and 9 fail to influence drug-induced neuroapoptosis in developing rat brain. Neurotox Res. 2011 May;19(4):638-48. Doi: 10.1007/s12640-010-9211-1. https://link.springer.com/article/10.1007%2Fs12640-010-9211-1
- Meyza KZ, Boguszewski PM, Nikolaev E, Zagrodzka J. Age increases anxiety and reactivity of the fear/anxiety circuit in Lewis rats. Behav Brain Res. 2011 Nov 20;225(1):192-200. doi: 10.1016/j.bbr.2011.07.011. http://www.sciencedirect.com/science/article/pii/S0166432811005262
- Blanchard DC, Defensor EB, Meyza KZ, Pobbe RL, Pearson BL, Bolivar VJ, Blanchard RJ. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev. 2012 Jan;36(1):285-96. doi: 10.1016/j.neubiorev.2011.06.008. Erratum in: Neurosci Biobehav Rev. 2012 Apr;36(4):1265. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208071/
- Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats. Behav Brain Res. 2011 Sep 30;223(1):107-18. doi: 10.1016/j.bbr.2011.04.026. http://www.sciencedirect.com/science/article/pii/S0166432811003366
- Knapska E, Mikosz M, Werka T, Maren S. Social modulation of learning in rats. Learn Mem. 2009 Dec 30;17(1):35-42. doi: 10.1101/lm.1670910. Print 2010 Jan. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3960044/
- Gorkiewicz T, Szczuraszek K, Wyrembek P, Michaluk P, Kaczmarek L, Mozrzymas JW. Matrix metalloproteinase-9 reversibly affects the time course of NMDA-induced currents in cultured rat hippocampal neurons. Hippocampus. 2010 Oct;20(10):1105-8. doi: 10.1002/hipo.20736. http://onlinelibrary.wiley.com/doi/10.1002/hipo.20736/epdf
- Knapska E, Maren S. Reciprocal patterns of c-Fos expression in the medial prefrontal cortex and amygdala after extinction and renewal of conditioned fear. Learn Mem. 2009 Jul 24;16(8):486-93. doi: 10.1101/lm.1463909. Print 2009 Aug. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726014/
- Jaholkowski P, Kiryk A, Jedynak P, Ben Abdallah NM, Knapska E, Kowalczyk A, Piechal A, Blecharz-Klin K, Figiel I, Lioudyno V, Widy-Tyszkiewicz E, Wilczynski GM, Lipp HP, Kaczmarek L, Filipkowski RK. New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem. 2009 Jun 24;16(7):439-51. doi: 10.1101/lm.1459709. Print 2009 Jul. http://learnmem.cshlp.org/content/16/7/439
- Chang CH, Knapska E, Orsini CA, Rabinak CA, Zimmerman JM, Maren S. Fear extinction in rodents. Curr Protoc Neurosci. 2009 Apr;Chapter 8:Unit8.23. doi: 10.1002/0471142301.ns0823s47 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756523/
- Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience. 2009 Jan 12;158(1):167-76. doi: 10.1016/j.neuroscience.2008.05.045. http://www.sciencedirect.com/science/article/pii/S0306452208007690
- Meyza KZ, Boguszewski PM, Nikolaev E, Zagrodzka J. Diverse sensitivity of RHA/Verh and RLA/Verh rats to emotional and spatial aspects of a novel environment as a result of a distinct pattern of neuronal activation in the fear/anxiety circuit. Behav Genet. 2009 Jan;39(1):48-61. doi: 10.1007/s10519-008-9234-z. https://dx.doi.org/10.1007/s10519-008-9234-z
- Kiryk A, Aida T, Tanaka K, Banerjee P, Wilczynski GM, Meyza K, Knapska E, Filipkowski RK, Kaczmarek L, Danysz W. Behavioral characterization of GLT1 (+/-) mice as a model of mild glutamatergic hyperfunction. Neurotox Res. 2008 Jan;13(1):19-30. https://link.springer.com/article/10.1007/BF03033364
- Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev. 2007 Oct;87(4):1113-73. Review. http://physrev.physiology.org/content/87/4/1113.long
- Meyza KZ, Boguszewski PM, Nikolaev E, Zagrodzka J. The effect of age on the dynamics and the level of c-Fos activation in response to acute restraint in Lewis rats. Behav Brain Res. 2007 Jun 18;180(2):183-9. http://www.sciencedirect.com/science/article/pii/S0166432807001489
- Knapska E, Walasek G, Nikolaev E, Neuhäusser-Wespy F, Lipp HP, Kaczmarek L, Werka T. Differential involvement of the central amygdala in appetitive versus aversive learning. Learn Mem. 2006 Mar-Apr;13(2):192-200. Epub 2006 Mar 17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1409843/
- Knapska E, Nikolaev E, Boguszewski P, Walasek G, Blaszczyk J, Kaczmarek L, Werka T. Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3858-62. Epub 2006 Feb 23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1533786/
- Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol. 2004 Nov;74(4):183-211. Review. http://www.sciencedirect.com/science/article/pii/S0301008204001625
- Radwanska K, Nikolaev E, Knapska E, Kaczmarek L. Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. Neuroreport. 2002 Dec 3;13(17):2241-6. http://journals.lww.com/neuroreport/pages/articleviewer.aspx?year=2002&issue=12030&article=00015&type=abstract
- 2021-2024 NCN SONATA | Ku wspólnocie - dynamiczne zmiany aktywności neuronalnej towarzyszące przekształcaniu się dystansu wobec obcych w więź społeczną, (A. Puścian)
- 2020-2022 NCN PRELUDIUM | Rola interneuronów SOM+ w korze przedczołowej w regulacji zarażania emocjonalnego, (T. Nikolaev)
- 2019-2022 NCN PRELUDIUM | Społecznie nabyta informacja o lokalizacji pokarmu a mózgowa reprezentacja miejsca, (M. Kostecki)
- 2016-2022 ERC | CoSI Functional connectomics of the amygdala in social interactions of different valence, (E. Knapska)
- 2018-2022 NCN OPUS | Społeczne przekazywanie emocji w zbliżonych do naturalnych warunkach systemu Eco-HAB, (E. Knapska)
- 2016-2022 NCN SONATA-BIS 5 | Rola zaburzeń plastyczności synaptycznej w ciele migdałowatym w rozwoju fenotypu aspołecznego w mysich modelach autyzmu, (K. Meyza)
- 2016-2021 NCN OPUS 10 | Neuronalne korelaty zarażania emocjonalnego u ludzi, (E. Knapska)
- 2016 NCN SONATA 9 | Zjawisko buforowania społecznego podczas wygaszania pamieci strachu, (T. Górkiewicz)
- 2014 NCN OPUS 6 | Obwody neuronalne w jądrze środkowym ciała migdałowatego zaangażowane w społeczne przekazywanie strachu, (E. Knapska)
- 2013-2015 HOMING PLUS | Extracellular matrix factors in the development of autism-like phenotype, (K. Meyza)
- 2012-2014 PSPB | Validation of tissue- and age-specific therapeutic intervention on synaptopathies relevant to autism spectrum disorders, (E. Knapska)
- 2011 NCN SONATA 1 | Obwody neuronalne zawiadujące przywróceniem reakcji strachu po procedurze wygaszania, (E. Knapska)
Narodowe Centrum Nauki 2020/39/D/NZ4/01785 SONATA grant dla: dr Alicja Puścian
Klasyfikowanie jednostek jako członków grupy własnej, czyli kręgów społecznych, z którymi się identyfikujemy, jest procesem szybkim i nieświadomym. W związku z tym bardzo niewiele potrzeba, aby odróżnić tych, których identyfikujemy jako obcych, co dzieje się podobnie szybko i arbitralnie, i często prowadzi do nieświadomych uprzedzeń. Prawdopodobnie dzieje się tak dlatego, że klasyfikowanie jednostek jako „my” lub „oni” jest wbudowanym mechanizmem neuronowym. Zbadamy rolę struktury mózgu, o której wiadomo, że jest kluczowa dla kodowania znajomości społecznej u wszystkich testowanych gatunków ssaków – kory przedczołowej. Będziemy prowadzić badania skoncentrowane na nerwowych podstawach przełamywania uprzedzeń wobec nieznanych przedstawicieli tego samego gatunku, aby stworzyć przyjazną grupę społeczną. Będziemy stosować kombinację najnowocześniejszych technik neuronauki systemowej, w tym półnaturalistycznej, zautomatyzowanej oceny behawioralnej transgenicznych szczepów myszy, mikroskopii dwufotonowej u zachowujących się zwierząt oraz chemo- i bezprzewodowej optogenetyki, aby odkryć, jak zmienia się aktywność głównych typów komórek składających się na obwody PFC zaangażowane w kodowanie znajomości społecznej odzwierciedla przejście od uprzedzeń do wspólnoty wewnątrzgrupowej.
Finansowanie: 1 232 370 PLN
Początek: 2021-12-06
Koniec: 2024-12-05
Status: W trakcie
Narodowe Centrum Nauki 2019/35/N/NZ4/01948 PRELUDIUM grant dla: Tomasz Nikolaev
Celem tego projektu jest zbadanie neuronalnych korelatów zarażenia emocjonalnego u myszy. W tym celu planujemy użyć trzech różnych paradygmatów behawioralnych: Bezpośredniego Przekazywania Strachu (ITF), Pośredniego Przekazywania Strachu (RTF) i Testu Rozpoznawania Emocji (ERT) w celu sprawdzenia i porównania różnych aspektów zarażenia emocjonalnego. Sugerowano, że obwody neuronalne w korze przedczołowej (PFC), a dokładniej podzbiór interneuronów w tym obszarze, odgrywają kluczową rolę w przetwarzaniu emocji społecznych. Nasze własne wyniki, uzyskane niedawno przy użyciu protokołu ITF, sugerują, że somatostatynowe interneurony PFC (SOM+) ulegają silnej aktywacji podczas obserwacyjnego uczenia się lęku. W moim projekcie chciałbym przetestować, czy interneurony SOM+ w PFC reagują również na Pośrednie Przekazywanie Strachu (w bezpiecznym środowisku klatki domowej) oraz podczas Testu Rozpoznawania Emocji. Przypuszczam, że te interneurony są ważne dla wszystkich form przekazywania emocji społecznych i będą miały zwiększoną aktywność w obu tych sytuacjach. Celem drugiej części projektu jest zbadanie roli neuronów SOM+ w zarażaniu emocjonalnym. Planuję to ocenić za pomocą chemogenetyki. Twierdzę, że hamowanie neuronów SOM+, podczas gdy zwierzęta wykonują każdy z proponowanych testów behawioralnych, hamuje przekazywanie emocji i osłabia zarażenie emocjonalne.
Finansowanie: PLN 139,200
Początek: 2020-07-08
Koniec: 2022-07-07
Projekt z grantu ERC dla: Dr. Ewelina Knapska
Celem projektu jest identyfikacja obwodów neuronalnych leżących u podstaw interakcji społecznych o różnej wartości emocjonalnej. Cel ten zostanie osiągnięty poprzez: (1) scharakteryzowanie funkcjonalnej anatomii obwodów neuronalnych w ciele migdałowatym leżących u podłoża społecznie przekazywanych emocji; (2) zbadanie roli zidentyfikowanych subpopulacji neuronalnych w kontroli zachowań społecznych; (3) weryfikację roli zależnych od metaloproteinazy macierzowej-9 subpopulacji neuronalnych w obrębie ciała migdałowatego w motywacji społecznej.
Finansowanie: 1 312 500 €
Początek: 2016-12-01
Koniec: 2022-08-31
Narodowe Centrum Nauki 2017/27/B/NZ4/02025 OPUS 14 grant dla: dr hab. Ewelina Knapska
Będziemy modelować dzielenie się pozytywnymi i negatywnymi emocjami u myszy żyjących w grupie społecznej. W tym celu wykorzystamy unikalną, naturalistyczną oprawę Eco-HAB, opracowanego przez nas automatycznego systemu pozwalającego na zautomatyzowany pomiar i analizę preferencji społecznych oraz interakcji społecznych u myszy. Modele mysie oferują unikalną możliwość wglądu w mechanizmy zarażania emocjonalnego poprzez manipulowanie aktywnością neuronów, co nie jest możliwe w badaniach na ludziach ze względów etycznych. Do manipulacji obwodami neuronalnymi zaangażowanymi w przekazywanie emocji wykorzystamy optogenetykę oraz w pełni implantowalne zminiaturyzowane urządzenie optoelektroniczne kompatybilne z rozwijanym przez nas systemem Eco-HAB. Pozwoli to na zdalną aktywację, a tym samym scharakteryzowanie funkcji obwodów neuronalnych w mózgu, które kontrolują społecznie przekazywane emocje.
Finansowanie: 1 299 500 PLN
Początek: 2018-08-27
Koniec: 2022-08-26
Narodowe Centrum Nauki 2015/18/E/NZ4/00600 SONATA-BIS 5 dla: dr Ksenia Meyza
W celu ustalenia roli plastyczności neuronalnej w obrębie kompleksu ciała migdałowatego w rozwoju zaburzonych interakcji społecznych w spektrum zaburzeń autystycznych (ASD) będziemy poszukiwać morfologicznych dowodów zaburzonej plastyczności neuronalnej w ciele migdałowatym myszy Fmr1KO, myszy poddanych lokalnej manipulacji poziomu metaloproteinazy macierzowej-9 (MMP-9) oraz idiopatycznego modelu ASD, myszy BTBR T+ Itpr3tf/J i ustalimy, czy funkcjonalna plastyczność jest zaburzona w konsekwencji morfologicznej aberracji.
Finansowanie: 1 050 000 PLN
Początek: 2016-09-01
Koniec: 2022-08-31
Narodowe Centrum Nauki 2018/31/N/NZ4/02853 PRELUDIUM grant dla: Mateusz Kostecki
Finansowanie: 202 000 PLN
Początek: 2019-07-11
Koniec: 2022-07-10